Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice.
نویسندگان
چکیده
Regeneration of injured adult sensory neurons within the CNS is essentially abortive, attributable in part to lesion-induced or revealed inhibitors such as the chondroitin sulfate proteoglycans and the myelin inhibitors (Nogo-A, MAG, and OMgp). Much of this inhibition may be overcome by boosting the growth status of sensory neurons by delivering a conditioning lesion to their peripheral branches. Here, we identify a key role for the lesion-induced cytokine interleukin-6 (IL-6) in mediating conditioning lesion-induced enhanced regeneration of injured dorsal column afferents. In adult mice, conditioning injury to the sciatic nerve 1 week before bilateral dorsal column crush resulted in regeneration of dorsal column axons up to and beyond the injury site into host CNS tissue. This enhanced growth state was accompanied by an increase in the expression of the growth-associated protein GAP43 in preinjured but not intact dorsal root ganglia (DRGs). Preconditioning injury of the sciatic nerve in IL-6 -/- mice resulted in the total failure in regeneration of dorsal column axons consequent on the lack of GAP43 upregulation after a preconditioning injury. DRGs cell counts and cholera toxin beta subunit labeling revealed that impaired regeneration in knock-out mice was unrelated to cell loss or a deficit in tracer transport. In vitro, exogenous IL-6 boosted sensory neuron growth status as evidenced by enhanced neurite extension. This effect required NGF or NT-3 but not soluble IL-6 receptor as cofactors. Evidence of conditioning lesion-enhanced growth status of DRGs cells can also be observed in vitro as an earlier and enhanced rate of neurite extension; this phenomenon fails in IL-6 -/- mice preinjured 7 d in vivo. We suggest that injury-induced IL-6 upregulation is required to promote regeneration within the CNS. Our results indicate that this is achieved through a boosted growth state of dorsal column projecting sensory neurons.
منابع مشابه
Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.
Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo recepto...
متن کاملEntrapment via synaptic-like connections between NG2 proteoglycan+ cells and dystrophic axons in the lesion plays a role in regeneration failure after spinal cord injury.
NG2 is purportedly one of the most growth-inhibitory chondroitin sulfate proteoglycans (CSPGs) produced after spinal cord injury. Nonetheless, once the severed axon tips dieback from the lesion core into the penumbra they closely associate with NG2+ cells. We asked if proteoglycans play a role in this tight cell-cell interaction and whether overadhesion upon these cells might participate in reg...
متن کاملRapamycin-Resistant mTOR Activity Is Required for Sensory Axon Regeneration Induced by a Conditioning Lesion
Neuronal mammalian target of rapamycin (mTOR) activity is a critical determinant of the intrinsic regenerative ability of mature neurons in the adult central nervous system (CNS). However, whether its action also applies to peripheral nervous system (PNS) neurons after injury remains elusive. To address this issue unambiguously, we used genetic approaches to determine the role of mTOR signaling...
متن کاملThe BMP coreceptor RGMb promotes while the endogenous BMP antagonist noggin reduces neurite outgrowth and peripheral nerve regeneration by modulating BMP signaling.
Repulsive guidance molecule b (RGMb) is a bone morphogenetic protein (BMP) coreceptor and sensitizer of BMP signaling, highly expressed in adult dorsal root ganglion (DRG) sensory neurons. We used a murine RGMb knock-out to gain insight into the physiological role of RGMb in the DRG, and address whether RGMb-mediated modulation of BMP signaling influences sensory axon regeneration. No evidence ...
متن کاملUpregulation of axon guidance molecules in the adult central nervous system of Nogo-A knockout mice restricts neuronal growth and regeneration.
Adult central nervous system axons show restricted growth and regeneration properties after injury. One of the underlying mechanisms is the activation of the Nogo-A/Nogo receptor (NgR1) signaling pathway. Nogo-A knockout (KO) mice show enhanced regenerative growth in vivo, even though it is less pronounced than after acute antibody-mediated neutralization of Nogo-A. Residual inhibition may invo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 18 شماره
صفحات -
تاریخ انتشار 2004